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ABSTRACT
Long fibre-reinforced thermoplastic or long fibre thermoplastic (LFT) composites possess
superior specific modulus and strength, excellent impact resistance, and other advantages
such as ease of processability, recyclability, and excellent corrosion resistance. These
advantages make LFT composites one of the most advanced lightweight engineering
materials and enable their increasing use in various applications. This review paper
summarises the research and development work that has been conducted on LFT
composites since their initial development. Different aspects of LFTs, such as process
development, fibre orientation distribution (FOD), fibre length distribution (FLD), and their
effects on the mechanical properties of LFT composites are described. The characterisation of
the FOD and FLD in the LFT composites using advanced imaging technology such as high-
resolution 3D micro-CT scanning technique is summarised. Research and development of LFT
hybridisation and LFT additives are also discussed. Finally, conclusions are made and the
future outlook of LFT composites is given..
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Introduction

Long fibre-reinforced thermoplastics (LFT) are compo-
site materials comprised of the thermoplastic polymer
matrix and discontinuous reinforcement fibres with a
length to a diameter aspect ratio greater than the criti-
cal aspect ratio. These composites have been widely
used in various applications as a result of their superior
mechanical properties, excellent processability, low
density, recyclability, low cost, excellent corrosion
resistance, good vibration damping, and infinite shelf
life. Compared to short fibre-reinforced thermoplastic
or short fibre thermoplastic (SFT) composites, LFTs
offer better mechanical properties [1–16], which, in
conjunction with their ease of processability, have
enabled their use as advanced lightweight engineering
materials, particularly within the automotive sector.
As a result, LFT production has experienced rapid
growth since year 2000. The global market grew from
108 to 245 million kg from 2004 to 2009 with an annual
growth rate of 18% [17]. A market survey published in
Jan 2017 estimated that the LFT global market will
grow from USD 3.28 billion to USD 5.55 billion by
2022 at an annual growth rate of 9.29% [18]. The
increasing use of LFTs in the automotive and electrical
and electronics industries is expected to drive the
growth of the LFT market [18].

Various thermoplastic polymers have been used as
LFT matrices, ranging from commodity polymers to

high-performance engineering polymers. The thermo-
plastic polymers used in LFT include polypropylene
(PP) [19–24], high-density polyethylene (HDPE)
[25,26], nylon 6 or polyamide 6 (PA6) [27–29],
nylon 66 or polyamide 66 (PA66) [5,6,30], polylactic
acid (PLA) [31], polymethylmethacrylate (PMMA)
[32], poly butylene terephthalate (PBT) [33], poly-
ethylene terephthalate (PET) [34], thermoplastic
polyurethane (TPU) [35], polyoxymethylene (POM)
[36,37], polyphynelenesulfide (PPS) [38–41], polyary-
letherketone (PAEK) [42], and polyetherketoneether-
ketoneketone (PEEKEK) [43]. It is estimated that
65% of the LFT market is polypropylene-based.
Polyamide-based LFTs have about 20% of the market
share and LFTs with other polymer systems comprise
the remaining 15% [17]. Though single polymer sys-
tems are most commonly used as the matrix in
LFTs, multiple polymer systems have also been
studied such as TPU + POM [44], PP+ polystyrene
(PS) [45], TPU + acrylonitrile butadiene styrene
(ABS) [46], PBT + PET [47,48], polycarbonate + PBT
[49], TPU + styrene acrylonitrile (SAN) [50], PA66
+ PP [51,52], PP + PBT [53], and polyvinyl chloride
(PVC)+PP [54]. LFTs with multi-matrix systems can
gain the benefit of both the matrix polymers. For
example, LFTs with a PP + PA66 matrix can benefit
from the low water absorption and excellent
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processing properties of PP and the high mechanical
strength and temperature resistance of PA66 [51].

Glass fibre is predominantly used as the reinforce-
ment material in LFT composites due to its low cost
and superior mechanical properties. The most studied
LFT is glass fibre-reinforced polypropylene (glass/PP)
[14,20,22,54–63], driven by its popularity in the auto-
motive industry. Other fibres such as carbon fibre
[27,29,35,39,64], basalt fibre [37,65,66], aramid fibre
[67,68], PP fibre [69], polyimide fibre [33], and PET
fibre [70] are also used as reinforcement. Although
natural fibre-reinforced polymer matrix composites
have not been traditionally considered to be LFTs, an
increasing number of composites reinforced with
long natural fibres have been developed and studied
[71]. Long natural fibre composites include chicken
feather fibre/PLA [72], keratin feather fibre/polyethy-
lene [73], flax fibre/PP [74,75], viscose fibre/PP [76],
sisal fibre/PP [77], pita fibre/polyhydroxybutyrate
[78], rayon fibre/PP [79], hemp fibre/PP [80], and
jute fibre/PLA [31,81]. In addition, more than one
type of fibre reinforcement may be used within a single
LFT. For example, Lee [82] used both glass and carbon
fibres in a PP matrix LFT composite to study the elec-
trical percolation and the hybrid effect of multiple fibre
types. It was found that the percolation threshold point
is between the loading of 6 and 10 vol.-% carbon fibre.
As the loading of carbon fibres increases, the modulus
increases while the strength reduces [82]. Wood pulp
fibres have been added to jute/PP LFT as an impact
modifier to achieve higher impact performance [83–
85]. Synthetic fibres are also used with natural fibres
together in LFTs [86,87]. The synthetic fibres offer
superior mechanical properties, while the natural
fibres can provide recyclability and sustainability.
The incorporation of 10% glass fibres into a jute fibre
LFT was found to improve the flexural and tensile
strength of jute fibre-reinforced PP composites by
about 60–74% and impact strength by almost one mag-
nitude [87].

Although the fibres used as reinforcement in LFTs
are discontinuous, these composites possess excellent
mechanical properties owing to high fibre length to
diameter ratio or fibre aspect ratio which are higher
than the critical fibre aspect ratio. The critical fibre
aspect ratio, (l/d)c, is defined as Equation (1) [1].

l
d

( )
c

= s fu

2t
(1)

where l is the fibre length, d is fibre diameter, s fu is the
ultimate tensile strength of the fibre, and t is the inter-
facial bonding strength between the fibre and the
matrix [1]. Figure 1 shows the effect of fibre aspect
ratio on the stress state of a single fibre [1]. It should
be noted that if the fibre aspect ratio is greater than
(l/d)c, the maximum fibre stress may reach its ultimate

tensile strength. LFTs generally have a fibre aspect ratio
equal to or greater than (l/d)c, and therefore, the fibres
are used to their maximum capacity. When the fibre
aspect ratio is below (l/d)c, as in SFTs, the maximum
stress on the fibre is below the fibre tensile strength
and fibre pullout is expected to occur, indicating that
the fibres are not used to their maximum capacity.
Consequently, SFTs generally exhibit lower mechanical
properties than LFTs.

If the values for the fibre diameter, interfacial bond-
ing strength, and fibre tensile strength are known, the
critical fibre length may be determined and the critical
fibre aspect ratio can be calculated. For instance, the
critical fibre length for kenaf fibres in a PP matrix
was calculated to be 2.4 mm for a fibre tensile strength
of 374.5 MPa, fibre-matrix interfacial shear strength of
4.9 MPa, and an average diameter of the kenaf elemen-
tary fibres of 62.2 μm [88]. The critical fibre aspect
ratio is approximately 39. The critical fibre length
and critical fibre aspect ratio can be different if the
same fibre is used in a different polymer matrix due
to changes in the interfacial bond strength. For
example, the critical fibre length in glass/PP LFTs is
between 3.2 and 4.4 mm [89,90], whereas the critical
fibre length for glass/PA66 is about 1.24 mm [91],
which results in a critical fibre aspect ratio of approxi-
mately 213–293 for the glass/PP LFT and 83 for the
glass/PA66 LFT, respectively. Surface treatment on
the fibres or the addition of coupling agents in the
matrix may result in different critical fibre lengths
and critical fibre aspect ratios because of their influence
on the fibre/matrix interfacial bond strength [92]. For a
given matrix and fibre (i.e. fixed diameter), we can use
just critical fibre length.

Fibre length is one of the main parameters that
determines the properties and processability of LFT
composites. With increasing fibre length, mechanical
properties, such as strength, modulus, impact resist-
ance [16,40,47,93], and wear resistance [94] increase.
However, processing of the composites becomes
increasingly difficult as shown in Figure 2 [1,14,95].
The shaded area in Figure 2 approximately shows the

Figure 1. The change of the fibre tensile stress, σ and inter-
facial shear stress, τ with fibre aspect ratio, (l/d). The fibres
in LFT composites have the aspect ratio equal to or greater
than (l/d)c , critical aspect ratio [1].
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typical range of fibre length in carbon fibre or glass
fibre LFT composites. It should be noticed that the
composites with this range of fibre length possess
both great processability and superior mechanical
properties.

Increasingly rigorous requirements and governmen-
tal regulations on gas mileage, such as the Corporate
Average Fuel Economy (CAFÉ) standard, have con-
tinuously pushed the use of lightweight materials
such as LFT composites in automobiles. Since the
first papers related to LFTs were published in the
1970s and late 1980s [5,6,53,96–101], they have been
quickly adopted by the automotive industry. It was esti-
mated that 80% of the volume of LFTs are used in auto-
motive applications in America and Europe [102]. In
2010, composites accounted for approximately 7% of
a vehicle’s weight, a number that is predicted to
reach 20% by 2035 [103]. As an important member
of the composite family that offers both processability

and superior properties, LFTs are expected to see con-
tinuously increasing use in automobiles and the auto-
motive industry will remain the prime consumer of
LFTs over the next 20 years. LFTs have been used
mainly secondary structural automotive components
such as front end modules [17,102,104–110], under-
body panels [105,107,110,111], trunk lids [105], hatch-
backs [102,107], seat components [17,102,105,107,110,
112,113], door components [17,102,105,107,110,114,115],
instrument panel carriers [17,102,104,105,107], spare-
wheel pans [102,105,107], bumper beams [102,105,
107,110,116,117], roof modules [107], leaf springs
[118,119], brake pads [120], engine hoods [121], bat-
tery trays [121], wheels [122], and sound absorbing
shells [105,107]. Figure 3 shows some of the typical
automotive components made using LFTs [102].

LFTs have also found use in other fields such as
transportation [123–126], medical devices [43,127–
129], military [39,130–132], sports equipment such as
surf boards [99] and sail boats [133], laptop computer
housings [134], safety equipment such as fire extin-
guishers [135], dumpster covers [134], gears [136],
and oil and gas drilling components such as bushings
[134], buoyancy collars and hardware [137–139].
Some of those unconventional applications require
the LFT material endure extremely high pressure
[131,135,137–139], highly corrosive media [99,133,
134,137–139], and even exceptionally elevated temp-
erature despite for a short period of time [131]. LFT
composites have demonstrated their success in meeting
these significant criterions. Those successful appli-
cation cases indicate that LFT composites have great
potential for more unconventional applications with
extreme conditions.

Since the 1990s, a large amount of research has been
conducted to study the relationships among proces-
sing, structure and final properties of LFT composites.
Fibre orientation distribution (FOD) and fibre length
distribution (FLD) have been studied under different
processing conditions and LFT processing has been
tremendously improved. Over time, significant

Figure 2. The effect of fibre length on the mechanical proper-
ties and processability [1,14,95]. The shaded area approxi-
mately shows the typical range of fibre length in carbon
fibre and glass fibre LFT (long fibre thermoplastic) composites,
which possess both great processability and superior mechan-
ical properties. SFT (short fibre thermoplastic) composites have
a fibre length less than LFT.

Figure 3. Typical automotive components made of LFT composites [102].
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characterisation of a wide range of material properties,
including quasi-static mechanical behaviour (tensile,
flexural, and compressive loading), dynamic perform-
ance (fatigue, impact toughness, and vibration damp-
ing), and other properties such as fire resistance, wear
resistance, and UV resistance have been investigated.
Models have been developed and validated to predict
the fibre orientation and length distribution in mould-
ing processes and the resultant bulk properties. The
paper summarises the progress of the research and
development work of LFT composites and offers the
future outlook of the LFT composite.

Process development

It is well known that thermoplastic polymers, even
when melted, have a much higher viscosity than ther-
moset polymers. Their high viscosity makes it challen-
ging to impregnate fibres and mould the final product
in a one-step process. Instead, an intermediate form,
generally pre-impregnated pellets, is produced before
the final product is manufactured using compression
moulding or injection moulding. The production of
LFT pellets is normally done via a process called hot
melt impregnation; it starts by pulling continuous
fibre tows through an impregnation die supplied
with the molten thermoplastic polymer. Once the
fibre tows are impregnated into the molten polymer,
the material is drawn into a rod, cooled, and cut
into pellets of a specific length. Figure 4 shows a sche-
matic of the hot melt impregnation process for produ-
cing LFT pellets.

Hartness et al. [140] reported the details of LFT pel-
let production using the hot melt impregnation process
through pultrusion or Direct ReInforcement Fabrica-
tion Technology (DRIFT). In this case, the impreg-
nation line is comprised of a fibre creel with a
tension control, a fibre heating oven, an impregnation

die which is fed polymer by a standard extrusion
machine, a chiller to cool the prepreg, a puller that con-
trols the line speed, and a chopper that chops the con-
tinuous rod into pellets with desired lengths, typically
6–25 mm (0.25–1"). Glass contents in the pellets
from 10 to 70% (by weight) have been demonstrated
with a control of ±2% [140]. It was found that the
fibres have good wetout with PP matrix using this
method. This process is a typical impregnation process
that has been used to produce LFT pellets by many
research groups [49,104,105,141–147]. Other pellet
production processes include commingling [70], pow-
der impregnation techniques [107,148], solid-state
polymerisation [149], wire coating [136], and cross-
head extrusion [107].

Other similar manufacturing processes, such as
direct strand deposition [150], have been developed
to produce LFT charges using a single-screw extruder
directly from dry fibres and thermoplastic polymer.
The direct strand deposition process skips the pre-
impregnation step and directly blends melted thermo-
plastic polymer with chopped dry fibre strands using a
single-screw extruder, normally resulting in longer
fibres than a twin screw extruder [45]. The process
completely relies on the single-screw plastication for
both fibre impregnation and dispersion. It was
suggested that chopped strands in bundles of 100–
300 individual filaments and PP powder should be
used to obtain the best impregnation and wetout
[150]. Ren et al. [151] encountered the same challenge
when directly compounding dry fibres with PP in a
single-screw extruder. Poor impregnation was
observed and it was recommended to reduce the
volume fraction of fibres and use PP with a high melt
flow index to improve impregnation and dispersion.

The two primary processing routes for converting
LFT pellets into moulded components are injection
moulding and compression moulding. In injection

Figure 4. Schematic of the hot melt impregnation process for producing LFT pellets.
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moulding, the LFT pellets are fed into an extruder for
melting and plastication and the molten material is
then injected into a closed mould. Extremely high
pressures are normally used. This process is able to
produce components with highly oriented fibres in
the flow direction which results in improved mechan-
ical properties in that direction [12,152]. However, a
high degree of fibre attrition occurs in injection mould-
ing due to the large shear forces imposed during melt-
ing and plastication, resulting in a reduction in fibre
length from 70 up to 90% [25,153–155]. For example,
the average fibre length was decreased from 10 to
approximately 1 mm for glass/PP LFT composites
[154]. Bijsterbosch and Gaymans characterised the
glass fibre shape from an injection-moulded glass/
PA6 LFT composite and found that the fragmented
glass fibres formed a triangular shape as shown in
Figure 5 [152]. They also reported that the fibre orien-
tation along the flow direction was approximately 70%.
With increasing fibre concentration, the fibre orien-
tation remained constant but the fibre length decreased
considerably [152].

The reduction of fibre length during injection
moulding has a negative influence on the resulting
mechanical properties. However, fibre length is not
the only parameter that affects component perform-
ance. Highly oriented fibres caused by the flow can par-
tially compensate for the mechanical property loss, but
only in the fibre direction. Although a reduction in
fibre length associated with injection moulding was
observed, it did not necessarily affect the tensile prop-
erties significantly [74]. In fact, the reduction in fibre
length was partially counterbalanced by improvements
in fibre orientation along the direction of polymer flow.
A flow restriction added to the injection moulding glass
fibre PA66 caused a reduction in fibre length but
increased fibre orientation in the direction of flow. As
a result, the effect of orientation was found to be
more significant and provided an improvement in the
tensile strength of the composite [30].

Several approaches have been implemented to
reduce the shear force and the consequent fibre attri-
tion in injection moulding. Decreasing shear stresses
in the melt during the plastication, filling and postfi-
lling steps were identified to be the main influence in
retaining fibre length [91,156,157]. The effect of the
fill time/injection speed on the fibre length during
injection moulding was studied and it was found that
average fibre length increased with fill time [158,159].
The average fibre length was 0.73 mm for a 4-second
fill time, 0.85 mm for a 1-second fill time, and
0.9 mm for a 2-second fill time [158]. Reduction of
fibre degradation could also be realised with a modified
screw geometry [160], a lower compression ratio in the
screw, a longer melting zone, and larger melt channels
for the nonreturn valve and nozzle [60,91,156]. Fibre
length degradation for injection-moulded glass/PP
was reduced by 40% through increasing the nozzle
diameter and the ring spacer gap. A final average
fibre length of 3.3 mm could be achieved from initial
12 mm fibre length [60].

Increasing processing temperature results in
improvement in the mechanical properties of injec-
tion-moulded LFT composites. Increasing temperature
from 210, 250 to 290°C led to more evenly distributed
glass fibres and increased the tensile strength, flexural
modulus, impact strength, and the degree of crystalli-
nity [63]. A similar finding was reported by Teixeira
et al. [161] and it showed that the barrel temperature
is among the top two factors affecting the flexural
strength of a glass/PA66 LFT composites. The effects
of glass fibre sizing on the fibre distribution, melt
flowability and mechanical properties were studied in
injection-moulded carbon/PA6 LFT composites
[146]. A higher concentration of sizing up to 20%
was found to enhance the fibre–matrix adhesion and
therefore resulted in higher tensile and flexural
strengths [146]. However, increasing initial fibre length
does not necessarily result in any improvement in fibre
length retention [162] or property enhancement [156].

Figure 5. Micrographs showing (a) small glass fibre particles in an injection moulded glass/PA6 LFT composite [152]; and (b) the
geometries of the glass fibre particles.
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The flexural properties of glass/PA66 LFT composites
did not show any improvement as the fibre length
was increased from 10 to 25 mm. Instead, the increase
in fibre length amplified structural heterogeneities such
as fibre clusters, local porosity, and the anisotropy of
the moulded parts [156].

Compression moulding is the other main process
used to produce LFT products. Here, a low shear extru-
der produces an LFT charge that is placed into a mould
and compressed into the final product geometry. The
majority of compression moulding has been done in
conjunction with extrusion [125,163,164], although
extrusion was skipped in some cases [148]. The reten-
tion of fibre length is the main attraction of extrusion
compression moulding (ECM) because of the low
shear force involved compared to injection moulding.
Therefore, it has gained a great deal of attention from
the automotive industry and other unconventional
applications. The low shear involved in the extrusion
and compression process results in low fibre length
attrition [125,163]. In one case, the average fibre length
of an ECM LFT glass/PP component for a mass transit
application was reduced from an initial length of 25 to
only 9.5 mm [125]. Figure 6 shows the glass fibres after
burning off the PP matrix and the FLD of 600 fibres.
Approximately 75% of the fibres have a length of
more than 5 mm.

The flow of the LFT melt during compression
moulding also leads to preferable fibre orientations,
which is, however, not as high as that experienced in
injection moulding. A preferable fibre orientation can
still induce a difference in mechanical properties
between the flow and transverse directions [27,165–
167]. For a 40 wt-% glass/PP LFT, the tensile strength
in the longitudinal direction was 114 MPa, but only
68 MPa in the transverse direction [166]. Microstruc-
tural analysis performed on observing the fibre orien-
tation in the glass/PP LFT has verified the preferable
fibre orientation in the flow direction [166].

The semi-finished LFT pellets were commonly
manufactured and injection and compression
moulding were consequently used until the LFT
technology was improved further with a more
efficient and cost-effective process being developed.
The drive for reducing processing steps and saving
shipping and handling costs for LFT pellets resulted
in the adoption of Direct LFT In-Line Compound-
ing (D-LFT-ILC or D-LFT), in the 1990s. The
D-LFT process combines the moulding station
(either injection moulding [168] or compression
moulding [27,28,169–171]) with the in-line com-
pounding of fibres with the matrix polymer. The
charge produced from in-line compounding is
used for subsequent injection or compression
moulding, as shown schematically in Figure 7. D-
LFT eliminates the steps required for packing, hand-
ling, and shipping the LFT pellets [168,172] and
enables the processing of the materials at low temp-
erature [173]. The polymer matrix undergoes only a
single melt history, which minimises degradation
and improves the physical properties [168]. D-LFT
has gained tremendous attraction from the automo-
tive sector and it was estimated that more than 90%
D-LFT process was used for automotive parts [134].
The elimination of the intermediate processing step
resulted in as much as a 50% reduction in raw
material costs versus purchased pellets for injection
moulding [110,168]. Although this approach also
incurs added equipment costs these can be amor-
tised at modest annual production volumes of
30,000 to 50,000 units [110].

Though injection moulding and compression
moulding are the most common processing methods
for LFTs, other processing methods have been devel-
oped such as injection compression moulding [20],
extrusion blow moulding [25,174], Direct Incorpor-
ation of Continuous Fibres (DIF) [175,176], and the
LFT foam process [177–179].

Figure 6. (a) Micrograph for dispersed glass fibres extracted from a moulded glass/PP LFT automobile door component; (b) Fibre
length distribution from measuring the length of 600 fibres showing that 75% of the fibres have a length more than 5 mm [125].
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Fibre content, FOD, and FLD

Fibre content has a direct effect on the mechanical
properties of LFTs. Increasing fibre content to certain
percentage (50% by weight (wt-%)) has improved the
mechanical properties [14,149,156,169,180,181]. Tho-
mason [61,62] studied injection-moulded long glass
fibre PP with a large range of fibre contents from 0
to 73 wt-% (0–50 vol.-%). It was concluded that the
composite modulus increased linearly with fibre
volume fraction over the whole range. However, both
strength and impact performance peaked in the 40–
50 wt-% (20–28 vol.-%) fibre range and then decrease
at higher fibre content as shown in Figure 8 [61,62].
The properties dropped to the unreinforced PP per-
formance at the highest fibre content of 73 wt-% [61].
Fibre bundles caused by inadequate dispersion were
the proposed reason for the property decrease at high
fibre contents [61]. Similar trends have been found
for the tensile modulus and flexural modulus of PP
fibre-reinforced propylene–ethylene copolymer LFT
[69] and the impact strength for LFT glass/PA6

[149]. The properties peak at approximately 50 wt-%
fibre content [69,149].

Many studies have been conducted on the FOD and
FLD in LFT composites, as both factors also signifi-
cantly affect the mechanical properties. Several
methods have been developed for measuring the
FOD and FLD. Microscopy is often used to measure

Figure 7. Schematic of inline compounding D-LFT; (a) with compression moulding and (b) with extrusion compression moulding
(ECM) process.

Figure 8. The effect of fibre content on the tensile and flexural
strength of glass/PP LFT [61,62].

INTERNATIONAL MATERIALS REVIEWS 7



FLD after burning off the polymer matrix [125,182–
186]. This method was used to study the fibre length
attrition in glass fibre LFT composites and valuable
findings were obtained [185]. It has been found that
the average residual fibre length of glass/PA LFT exhib-
ited a strong inverse dependence on fibre content and it
is significantly less than the average residue fibre length
in glass/PP LFT [185,186]. It should be mentioned that
in the process of FLD measurement, a given sample
only represents the FLD at a single point in the
moulded part. The standard burn-off / sample separ-
ation technique to FLD measurements in LFT samples
often results in skewed distributions [183] because this
technique was designed for short fibre composite. LFTs
have much broader FLDs and the fibres in LFTs have a
tendency to bend and curl. Other methods include
selecting a small quantity of fibres with tweezers after
matrix burn-off, but these results in fibre breakage
which leads to more dropping of short fibres, tending
to skew FLD measurements. As a consequence of
these challenges, another procedure for sample prep-
aration for FLD measurement in LFT samples was
developed, which can be summarised as: (a) composite
coupon isolation, (b) constrained removal of matrix
material, (c) fibre sample isolation, (d) filament dis-
persion, and (e) imaging and individual filament length
measurement [183].

It is much more challenging to characterise the FOD
in LFT composites. 2D image analysis [187–192] has
initially been used to map the fibre orientation in
LFTs. This technique is sometimes coupled with relief
etching that is used to etch away the polymer matrix of
several microns thickness on a polished surface and
therefore show fibre orientation [193–196]. In this
method, information from a 2-D section is used for
the characterisation of a 3-D material. The sectioned

fibres appear as ellipses in the cross-section, for
which geometric parameters such as minor axis,
major axis, and in plane angle may be measured
(Figure 9) [195,196]. Single-fibre orientation angles
and components can, therefore, be determined exper-
imentally and then converted to components of a
second-order orientation tensor (aij) that is shown in
Figure 9 [195,196]. This method enables the construc-
tion of 3D fibre orientation based on the 2D fibre cross-
sections. With the advancement of X-ray scanning
technology and the development of powerful image
processing and computing capabilities, 3D micro-com-
puterised tomography (Micro-CT) has recently
become a common technique for characterising the
FOD and FLD in LFTs [197–206]. It is able to scan
an LFT sample and generate 2D images, from which
a 3D image is constructed. Since the fibres normally
have small diameters, high resolution of the Micro-
CT scanner is indispensable to capture the details of
the FOD. A resolution of approximately 4 μm or
lower has been suggested to ensure that individual
fibres with diameters of 15 μm can be observed [200].
This technique essentially provides a direct visualisa-
tion of the 3D fibre orientation in LFTs and quantitat-
ive analysis of FOD can also be realised. Sun et al. [203]
measured and quantitatively analysed the FOD in
injection-moulded LFTs using the Micro-CT scanning
method. The Micro-CT image showed a symmetric
distribution of fibres through the thickness direction,
which consisted of an outer skin, transition zone and
the core. It was also found that the skin layer was
thin and it had only one layer of highly oriented
fibres. The core layer also had highly oriented fibres
but the orientation of fibres was different from that
of the skin layer [203]. The high resolution of the
Micro-CT normally results in a large number of data

Figure 9. Schematic showing a single-fibre orientation parameters and the second-order orientation tensor (aij) components. The
orientation angles of the fibre can be transformed into components of (aij) [195,196].
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points. A 10 × 5 × 4 mm3 sample scanned at a 3-μm
resolution may result in 6–7 GB of image files [200].
Figure 10 shows the 3D Micro-CT scanned image of
a 20 wt-% glass/PP LFT with a size of 1.8 × 1.8 ×
0.6 mm [202]. In spite of its current limitation in
sample size, the Micro-CT is a method that can quan-
titatively characterise both the FOD and the FLD accu-
rately and efficiently for LFT composites.

In addition to developing experimental methods for
characterising the FOD and FLD of LFTs, different
numerical models and simulation tools have been
developed for predicting the fibre orientation
[188,191,199,207–226] and fibre length [162,188,209–
211,220,227–230]. Most, if not all, of the models in
LFTs have adopted modelling techniques from short
fibre composite, random oriented fibre composite and
continuous fibre composites [188,199,215,220,221].
The Folgar-Tucker model initially developed for
short fibre composites that accounts for fibre–fibre
interaction through the isotropic rotary diffusion has
been modified for better capturing the anisotropic
characteristics of the FOD in injection-moulded LFTs
[208,209,214,221]. One version of the modified model
is Anisotropic Rotary Diffusion (ARD) and when com-
bined with Reduced Strain Closure (RSC) models, it can
be applied to accurately predict the orientation for injec-
tion-moulded LFTs [211,214,218]. However, the accu-
racy of the ARD-SRC model drops within the core
layers of the moulded part. Tseng et al. [208,212,226]
proposed an Improved ARD model that is coupled
with Retarding Principal Rate Model (iARD-RPR)
[208]. In their work, it was shown that the iARD-RPR
model is capable of predicting long fibre orientation in
the shell as well as core layers.

FLD is another important parameter that contrib-
utes to the properties of LFT, whereas it is normally
neglected for SFT composites [209]. Both Phelps
et al. [229] and Durin [230] independently developed
complicated models for predicting the FLD in LFTs
using similar approaches. Both of the models com-
puted the time evolution of the full FLD and used the

criterion that fibre breaks through buckling mechan-
ism under compressive forces induced by hydro-dyna-
mical pressure during moulding process [229,230].
Phelps verified the modelling results using injection-
moulded glass/PP LFT, while the FLD verification
experiments were conducted by blending glass fibres
with PA12 using a twin screw extruder in Durin’s
work [230]. Nevertheless, satisfactory agreement was
found between the modelling prediction and exper-
imental results in both of the studies. A semi-empirical
approach was also used to model the fibre length
change for LFT composites. Bumm et al. [227] pro-
posed a kinetic model that describes the glass fibre
attrition in a co-rotating twin screw extruder for LFT
composites based on experimental data and Euler
buckling theory. Chen et al. [162] later validated the
model with injection-moulded glass/PP and carbon/
PP LFTs.

The ultimate goal of modelling the FOD and FLD is
to use the modelling results to predict the mechanical
properties of the LFT composites [220,231–250]. Two
approaches have been normally used to model the elas-
tic properties of LFT composites, namely, micromecha-
nical modelling and numerical simulation of a
composite representative volume element (RVE)
[188]. The micromechanical model that was developed
and proved to be accurate for short fibre composite
properties, Eshelby–Mori–Tanaka model, is a base
model for predicting the elastic properties of LFT com-
posites [188]. Combined with the fibre orientation
averaging method, it was able to model the elastic
properties of an injection-moulded glass/PP LFT com-
posite, including Young’s moduli and shear moduli
[188]. Furthermore, the elastic–plastic behaviour of
LFT composites were modelled using a similar
approach but combined with continuum damage
mechanics and the nonlinear stress–strain response
of injection-moulded LFT composites were modelled
[237]. The RVE method is another powerful tool that
has been used to predict the properties of LFTs
[199,215,222–224,251]. The RVE, or unit cell, is
required to be sufficiently large to be statistically repre-
sentative of a heterogeneous material, such as LFT.
Fliegener et al. [199] developed a modelling procedure
to construct the RVE for glass/PP LFTs that was based
on the parameters describing the, the FLD, and the
fibre volume content statistically. The finite element
analysis was consequently used to numerically com-
pute the material properties after the loading and
boundary conditions were applied. An excellent agree-
ment was achieved between the modelling results of
elastic modulus obtained by the developed procedure
and the experimental results of three glass/PP LFT
with different fibre fractions varying from 10 to
30 wt-%. It was concluded that the RVE method is an
effective way to model the complex microstructure of
LFT [199]. The same approach has also been

Figure 10. Micro-CT image of a 20 wt% glass/PP LFT with a
dimension of 1.8 × 1.8 × 0.6 mm [202]. Fibres are assigned
with random colours for better distinction.
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successfully used for determining the effect of fibre cur-
vature on the elastic properties of LFTs [220] and the
uniaxial compression behaviour of LFTs [225]. It
should be pointed out that although the RVE method
is an effective method for modelling LFTs, its draw-
backs such as insufficient packing failing to achieve
higher fibre percentage such as 40–50% wt because of
unavoidable fibre intersection could prevent it from
extensive use for LFTs with high fibre percentages
[224].

So far, the elastic properties, such as Young’s mod-
ulus, shear modulus, or even nonlinear stress–strain
behaviour of LFT composites have been modelled
and the modelling results have been validated for injec-
tion-moulded LFT composites exclusively. Limited
studies have been found on compression moulded
LFTs though. With the benefit of longer fibres achieved
in compression moulded LFTs compared with injec-
tion-moulded LFTs, it would be very beneficial to
have more effort in modelling compression moulded
LFTs in the future.

Properties of LFTs

The good structural performance of LFT composites
has drawn great attention, especially from automotive
industry. They have shown good performance in
dynamic testing such as impact, creep, and fatigue
and quasi-static testing such as tensile strength, tensile
modulus, flexural strength, and flexural modulus. Some
of the quasi-static testing results are summarised in
Table 1 for LFTs with a different matrix, fibre, and/or
fibre contents.

LFTs have often been compared to Glass Mat Ther-
moplastics (GMT), another discontinuous fibre-
reinforced composite material. Generally, LFTs have
comparable mechanical properties with GMTs
[108,252–255]. However, it was reported that GMTs
have higher strength [253,255] and toughness [256]
than LFTs with the same fibre content. LFTs are

normally used in those application areas where stiffness
and strength requirements are the top priorities, while
GMTs would be used more in applications where high
toughness and fatigue resistance are required [256]. It
is still debatable which material prevails over the
other because both of the GMT and LFT composite
materials have their own advantages and disadvantages
[257]. However, it seems that LFTs have increasingly
gained market share because of their low cost, design
flexibility, and ease of processing. The comparison of
the European market share between GMT and LFT
from the 1980s to 2009 (see Figure 11) shows an
increasing growth of the LFT market and dwindling
GMT share [107].

Thermoplastic polymers normally have good tough-
ness and therefore impact performance. With the
addition of reinforcement fibres, LFTs offer superior
impact resistance [75,90,117,122,180,258–260]. With
different additives added, the impact performance of
LFT composites could vary. With the addition of com-
patibilizer, the impact properties of LFTs increase [261]
but reduce with the addition of carbon black [262].
Impact testing was also carried out to investigate the
ductile/brittle behaviour of LFTs. It was found there
is no apparent ductile/brittle transition for glass/PA6
and glass/PP LFTs [180]. As a strain rate dependent
material, LFTs show increased tensile and compression
ultimate strengths and failure strains with increasing
strain rate [263,264]. However, the modulus of LFTs
could have a different trend in different ranges of strain
rate [263]. The main failure modes for LFT composites
under high strain rate testing, such as impact, are fibre
fracture, matrix cracking and fibre/matrix debonding
[4,258,263,265].

In addition to their quasi-static material properties
and impact performance, the creep behaviour [266–
271], fatigue behaviour [6,51,272–275], vibration
behaviour [276], UV resistance [277], machinability
[278,279], heat treatment [280], and rheological behav-
iour [56,58,96,199,281–284], of LFT composites have

Table 1. Mechanical properties of LFT composites.
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also been studied. Chevali et al. [190,266,267] have
extensively studied the creep performance for glass
fibre LFTs, including glass/PP, glass/HDPE, and
glass/PA66 LFT. It was confirmed that the fibre
addition improves the creep resistance compared
with the matrix for all the LFT composite [190].
Creep compliance of UV exposed glass/PA66 LFT
decreased with increasing exposure time because of
an increased degree of crystallinity leading to reduced
polymeric segmental motion [267]. Fibre alignment
in certain direction in LFT contributes to the reduced
creep compliance in that direction [190]. The rheologi-
cal studies by a number of research groups [281–283]
have shown that LFT composites show shear thinning
and higher fibre content causes more shear thinning.
The viscosity of LFT suspensions increases with fibre
length and fibre content [56,284]. The research
findings from all these studies have provided useful
information for LFT component design, material selec-
tion and processing.

LFT hybridising/joining

In cases where a single material cannot meet strict
design requirements, the idea of hybridising different
types of materials into one structure/component has
gained significant attention. The integration of other
materials into LFTs can be achieved by blending during
impregnation/extrusion and/or co-moulding. Hybridis-
ing can improve the mechanical properties [17,285,286],
electromagnetic interference (EMI) shielding [287,288],
appearance [163,289], or acoustic emission [55], while
maintaining a low density. Endless LFT (E-LFT) is an
example of a common hybridised material. E-LFT
combines LFT with unidirectional fibre composite, gen-
erally with the same polymer matrix for adequate bond-
ing to enhance its rigidity, strength [290–293], and/or
impact resistance [111,294]. Thattaiparthasarathy et al.
[291,295] studied the effect of different types of endless
fibre composites on the strength of glass/PP LFTs by

compression co-moulding the LFT onto the endless
fibre composite. The average flexural strength for end-
less E-glass, S2-glass, and carbon fibre E-LFTs were
137.4, 163.9, and 180.6 MPa, respectively, compared to
an average of 106.5 MPa for glass/PP LFTs without
any unidirectional fibre composite. Figure 12 shows a
glass/PP LFT plate co-moulded with unidirectional
glass fibre PP tapes [291]. In another study, a carbon/
PA6 LFT was hybridised with a continuous fibre com-
posite using injection moulding. It was found that a
mould temperature of 190°C resulted in the highest
interfacial welded strength of 19.2 MPa between the
LFT and the continuous fibre composite [290]. The ten-
sile, flexural, and impact performance of endless glass
fibre composites co-moulded with glass/PP LFT
increased with the fraction of endless fibre composite
[294]. Fibre bundles were found to promote the tough-
ness of E-LFTs as the failure mechanism of fibre break-
age was replaced by fibre pullout which absorbs more
energy. Woven long fibre hybrid thermoplastic compo-
sites (WLFT) are another hybridised LFT material in
which pre-impregnated woven fibre composite sheets

Figure 11. Market demand for LFT in Europe showing the increasing growth of the LFT market and dwindling GMT share [107].

Figure 12. Co-moulded unidirectional/endless glass fibre PP
composite with glass/PP LFT [291].
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are co-moulded with LFTs. Overall, continuous fibres in
different forms have been used to hybridise with LFTs
and these hybridised LFTs with improved strength
and rigidity provide more opportunities for weight sav-
ing as a structural material, especially in automotive
industry. For example, a bumper back beam produced
using the WLFT resulted in a 35% weight reduction
compared to its steel counterpart [296]. Furthermore,
this hybrid LFT composite is favoured by the automo-
tive industry because the addition of the continuous
fibre composite to LFT does not necessarily reduce the
production rate, which is another important criterion
in the automotive industry. Desirable properties at cer-
tain locations of an automotive component can also be
readily achieved by strategical placement of the continu-
ous fibre in the composite. It is expected that these
advantages will enable continuously increasing use of
the continuous fibre hybridised LFT composite in auto-
motive and other applications.

Hybridising with metal is another approach to
enhance the strength and rigidity of LFTs [131,288,
297–299]. The bonding strength between the metal
and the LFT relies on the interfacial mechanical inter-
locking. The design and processing of a hybridised tail-
cone consisting of aluminium and glass/PA66 LFT
were reported [131,300,301]. The glass/PA66 LFT
was co-moulded on the threaded aluminium to pro-
duce a hybridised tailcone with thermal resistance
and superior mechanical properties. The performance
of glass/PA LFT laminated with aluminium was
studied in tension, bending, and impact [302]. The
hybridised laminate possessed a much higher modulus
and strength than pure LFT. The bonding between a
glass/PA66 LFT and aluminium was found to be ade-
quate to stand extremely high pressure (406 MPa)
and temperature (1970 K) for a short period
[131,303]. Not only the bulk and sheet metals were
used to hybridise with LFTs, metallic wires have also
been integrated with LFT composites to enhance

their rigidity and impact resistance [304]. The addition
of steel wire grids has tripled the impact energy absorp-
tion for LFT. The process of hybridising other
materials with LFT is similar to the processes for
moulding LFT composites. The hybridising material
is placed in a mould and LFT melt is injected onto
(for injection moulding process) or LFT charge is
placed onto the material and compression moulded
to form a hybridised material. Figure 13 shows the typi-
cal co-moulding process for hybridising LFTs with uni-
directional/endless fibre composites, woven fabric
composites, or metals.

In addition to hybridising LFTs with continuous
fibre composites and metallic materials, polymer
films have also been co-moulded onto the surface of
LFTs to enhance their aesthetic appearance. This
approach improves the surface smoothness such that
the LFT can be adopted as a potential material for
the exterior panels that meet ‘Class A’ finishes in auto-
motive applications. In standard LFT processes, the
temperature of the LFT charge is above the melting
temperature of the polymer matrix while the mould
temperature is much lower. Therefore, the skin of the
charge freezes instantaneously when it touches the
mould, which causes fibre imprints on the surface
and therefore a high surface roughness. The arithmetic
mean roughness of LFT surface at flow area is 0.38 μm,
which is much lower than that of the lay-up position
(0.61 μm) due to the high cooling rates [305]. Co-
moulding a film onto the LFT surface is the main
approach that has been used to improve LFT surface
finish. Geiger et al. [306] back-pressed films to LFTs
using an extrusion compression moulding process. It
has been proved possible to completely eliminate the
known occurrence of fibre agglomerations or non-
impregnated fibres on the surface of LFT components.
Similar approach was used to co-mould films on the
surface of a glass/PP LFT panel to obtain a good surface
finish. It was found that co-moulding the film in an

Figure 13. Schematic for hybridising of LFT and unidirectional/endless, woven fibre composite, or metallic materials.

12 H. NING ET AL.



extrusion compression moulding process can be
readily realised and a good surface finish was achieved
[163]. Though more research and development work
needs to be conducted to further improve the surface
smoothness, there is a great potential for LFT compo-
sites to have surface finishes adequate for exterior com-
ponents through the co-moulding or other methods.

LFT composites are thermoplastic polymer-based
materials that can be re-melted and joined by different
means such as resistance welding, ultrasonic welding,
and friction welding. LFT glass/PP was successfully
hybridised to continuous glass fibre-reinforced PP
using resistance welding. A stainless steel mesh implant
was used between the composites to provide a larger
welding window [307,308]. The effects of several weld-
ing parameters, such as weld time, weld pressure, and
electric current, were studied in relation to the bonding
strength. A shear strength of 17–20 MPa, equal to the
shear strength of the continuous fibre-reinforced com-
posite, can be achieved [307]. Ultrasonic riveting and
hot-air-sticking were also used to hybridise LFT
glass/PP and glass/PA6 with steel. Hot-air-sticking
was the preferred joining method to connect the LFT
to metallic structures [309].

Additive materials for LFTs

Additives are a substance added to a certain material in
small quantities to improve its properties. Additives
have been added to LFT composites for several pur-
poses, such as lowering the material cost, increasing
the modulus [55], improving the appearance [289],
and increasing flame retardancy [59,121,310,311]. Pig-
ments have been blended into LFT to provide colorisa-
tion. They are usually added into the polymer by
simple blending, wire coating, or hot melt impreg-
nation [289]. A 0.5% loading of oxide pigment yielded
higher mechanical performance than 5% pigment con-
centration while providing uniform colour dispersion
[289]. Other additives, such as CaCO3, can be added
to the polymers to enhance the material modulus
[55]. However, its fracture toughness decreased upon
filler addition and the average fibre length decreases
by 25% [55].

The flammability of LFT composites can be reduced
through the addition of flame-retardant additives.
Different additive systems, such as a brominated sys-
tem composed of decabromodiphenyl oxide (DB) and
antimonous oxide (AO) [121] and a halogen-free
flame-retardant composed of a charring agent (CA),
ammonium polyphosphate (APP) and organically
modified montmorillonite (OMMT) [59], are used to
improve the PP matrix LFTs. Both of these studies
show that the flame-retardant materials added to
glass/PP LFTs improved the fire rating from no rating
to UL-94 V-0 with minimal sacrifice of mechanical
properties. Similar trends have been observed when

adding decabromodiphenyl ethane (DBDPE) and anti-
monous oxide (AO) to glass/PP LFT. The fire retar-
dancy of the glass/PP LFT increased, while its
mechanical properties are marginally affected [121].
Besides PP, another commonly used matrix in LFT
composites, nylon or PA, also have easy flammability
[312]. In order to enhance its flame retardancy, Zn2
+-modified melamine polyphosphate (Zn-MpolyP)
flame retardant was added. UL-94 V-0 rating was
achieved with a 25% loading of the flame retardant
added. Meanwhile, the retardant improved the crystal-
lisation degree and temperature of PA66 matrix and
enhanced the mechanical properties of the composite
by effectively improving the interfacial compatibility
between the glass fibre and the PA66 matrix [312]. A
different flame-retardant system, consisting of tris(tri-
bromophenyl) cyanurate and antimony trioxide, was
added to a glass/PA6 LFT to achieve UL-94 V-0 rating
[313]. The influence of thermal-oxidative aging of the
flame-retardant properties was also studied [313] and
it was found that the thermal-oxidative aging enhanced
the flame retardancy by improving the solid phase
flame-retardant mechanism by a char-promotion func-
tion [313].

There are also a small number of studies on the
addition of nanomaterials into LFT composites.
Those studies mainly focused on improving the
flame/thermal performance of LFTs. Nanoclay has
been added to LFTs to enhance the flame retardancy
and reduce thermal degradation [296,314–316].
Vaddi [316] used montmorillonite nanoclay to reduce
the dripping of the molten glass/PP and glass/PE LFT
composites. Nanoclay was also added to glass/PP LFT
to enhance its resistance to thermal degradation
[315]. The initial thermal stability of the modified
LFT glass/PP at 5% weight loss was enhanced by
56°C compared to the conventional LFT glass/PP com-
posite [314,315]. In spite of the benefits with nanoma-
terial added to LFTs, it is foreseen that the research
effort in adding the nanomaterial to improve flame/
thermal performance for LFTs will probably be still
limited in the future because of its high material cost
and the benefit of improvement can simply be achieved
by adding lower cost flame-retardant additives as dis-
cussed previously. The difficulty of blending nanoma-
terials homogeneously and consistently in a highly
viscous thermoplastic matrix might be another hurdle
that prevents the nanomaterials from being widely
adopted in LFT composites.

Recyclability

LFT composites consist of fibres and thermoplastics
matrix, both of which can be recycled and reused.
With more governmental regulations seeking a higher
recycling percentage of automotive materials at the end
of their life, LFTs have an advantage compared to
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thermoset or thermoset composites. Vehicles are
required to be made of 95% recyclable materials, of
which 85% can be recovered through reuse or mechan-
ical recycling and 10% through energy recovery or
thermal recycling [317].

The LFT composite has been recycled as a whole
and used as the core material of a sandwich structure
[318]. Washed/cleaned LFT scraps went through a cut-
ting mill before being pressed with continuous glass
fabrics to form a sandwich structure. The recycled
LFT was enclosed as the core in the middle by the
glass fabrics on the surfaces. The process can be either
a double belt process that can produce a flat sandwich
structure with constant cross-section or direct com-
pression moulding process that produce a sandwich
structure with different configurations [318]. LFT
machining residue or shredded LFT scraps have also
been recycled to produce compression moulded com-
ponents [319]. The main purpose of this work is to
study the possibility of eliminating any scraps when
producing LFT parts and achieving zero scrap rate by
mixing all of the scrap material with virgin LFT for
the part production. The effect of the percentage of
the LFT scraps added to the virgin LFT composite on
the resultant LFT properties was systematically studied
[319]. It can be envisioned that the difference in fibre
length and fibre content of the recycled LFT compo-
sites will pose challenges in the quality control of
final LFT parts/products.

An effort has been exerted to use recycled fibres,
especially carbon fibres, in LFTs. The carbon fibres
are mainly recycled from large structures such as air-
craft components or windmill blades made of continu-
ous carbon fibre epoxy composites. The composite
structure was chopped and discontinuous carbon
fibres were extracted by pyrolysing the epoxy resin
matrix [320–322]. The recycled carbon fibres were
then combined with thermoplastic polymers in powder
or fibre form and processed in injection moulding or
compression moulding. The tensile and flexural prop-
erties of a recycled carbon fibre-reinforced PPS LFT
were evaluated after several iterations of shredding–
moulding–testing [320,321]. No definitive trends
were found for the properties measured as a function
of the number of iterations [320]. The vibration
response of the recycled carbon/PPS at each iteration
was also evaluated and there was a very little change
in the vibration response of the recycled carbon fibre-
reinforced PPS LFT [38]. In addition to the carbon
fibre recycling, glass fibres have also been recycled
and studies have been carried out on their interfacial
bonding with polymers. It has been demonstrated
that thermally recycled glass fibres needed a post treat-
ment to act as effective reinforcement in PP composites
[323]. The adhesion between fibres and PP can be
regenerated by the addition of PP-g-MA, which is in
good agreement with the findings by Zhang et al.

[147]. The post-treatment of the fibres with γ-amino-
propyltriethoxysilane (APS) was even more effective
in improving the composite performance. The compo-
sites with the post-treated fibres almost reached the
performance of the composites with as-received fibres
[323]. The use of recycled fibres in LFTs, especially car-
bon fibres, can largely reduce the raw material cost as
extracting carbon fibres can avoid the time-consuming
and energy-intensive manufacturing process from pre-
cursors. However, the variation in fibre grades due to
different fibre sources could pose a challenge in quality
control and maintaining consistency in LFT part
properties.

Although there are only a limited number of studies
on LFT recycling to date, it can be predicted that recy-
cling of LFTs will become more important and preva-
lent in the near future. Large quantities of LFT
composites are reaching the end of their service life
and recycling would be a logic and effective way to
avoid them from being sent to the landfills. The con-
tinuous growth of the LFT composite in various appli-
cations, raw material cost saving by using recycled LFT,
and more strict environmental protection standards
would also drive the demand for its recycling. It is
expected that increased research and development
work will be performed on the recycling of LFT com-
posites in spite of the challenges previously mentioned.

Conclusions and outlooks

LFT composite materials have established a strong
presence in various applications, especially within the
automotive industry as semi-structural interior com-
ponents because of their good mechanical properties,
low density, good processability, and recyclability.
The automotive market has been and will be the
main market for the LFT composites in the foreseeable
future.

With the improvement in the resolution of hard-
ware (Micro CT or scanning techniques) and comput-
ing capability in analysing the FLD and FOD in LFT
composites, more understanding will be achieved on
how the processing conditions affect the FLD and
FOD and the resultant LFT properties. An accurate
prediction of the localised material properties in LFTs
has the potential to provide a better estimation of the
performance of the LFT components and result in bet-
ter product design. More studies on the FOD and FLD
of LFTs, experimentally and computationally, will
enable the accurate description of the interrelationship
of the processing, structure, and properties and there-
fore better design and manufacturing of LFT
components.

Thus far, injection-moulded LFT composites have
been predominantly investigated, experimentally or
computationally. The study of FOD and FLD and the
modelling and simulation are mostly focused on the
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injection-moulded LFT composites. However, with the
benefit of less fibre length attrition achieved in com-
pression moulding process and its increasing popular-
ity, it would be beneficial to have more research work
be performed on compression moulded LFT compo-
sites in the future.

For applications with stringent requirements on
material properties, LFTs may be hybridised with other
materials to fulfil the tasks required by the application.
Continuous fibre-reinforced composites, metallic
materials, or plastic films can be readily integrated into
LFTs to provide additional properties such as EMI shield-
ing, improved strength, enhanced rigidity, greater wear
resistance, or better appearance. However, the interfacial
bonding between LFT and the hybridising materials,
including continuous fibre composites or metallic
materials, becomes crucial because it can determine the
overall properties of the hybridised material. Neverthe-
less, it is expected that hybridising with other materials
will become an important topic for the future develop-
mental and research work related to LFT composites.

Overall, LFT composites have become an increas-
ingly used class of high-performance lightweight
engineering materials. The research work conducted
to study the relationships among processing, structure,
and properties of LFTs since the 1990s has resulted in a
greater fundamental understanding of these materials
and led to a great improvement of their properties.
With the advantage of readily integrating other
materials by the co-moulding process, LFTs can pro-
vide more versatility and design flexibility, which can
open more avenues for applications. The use of LFT
composites in scenarios with extremely high pressure,
high temperature for a short period of time, and high
corrosion and their capability of meeting the significant
criteria show that they have a great potential for more
unconventional applications with extreme conditions.
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